Расчет годовых процентов: формула, правила расчета и примеры расчетов

Содержание:

Дисконтирование по сложным процентам

Рассмотрим использование при математическом дисконтировании сложных процентных ставок:

Если проценты будут начисляться m раз в году, то формула (22) примет вид:

  (23)

Пример 13

Банк производит начисление процентов на внесенную сумму по сложной процентной ставке, равной 20% в год. Какую сумму следует положить на депозит при условии, что вкладчик рассчитывает получить 10 000 тыс. руб. через 10 лет? Требуется рассмотреть два варианта начисления процентов — ежегодное и ежеквартальное.

При ежегодном начислении процентов по формуле (22):

PV = 10 000 / (1 + 0,2)10 = 1615,1 тыс. руб.

При ежеквартальном начислении процентов по формуле (23):

PV = 10 000 / (1 + 0,2 / 4)40 = 1420,5 тыс. руб.

Проценты: правила

Рассмотрим четыре известных способа поиска процентов.

Занимайтесь математикой в удовольствие вместе с нашими преподавателями на курсах по математике для учеников с 1 по 11 классы!

Нахождение одного процента от числа

При делении на 100% получается 1% от этого числа. Это правило можно использовать по-разному. Например, чтобы узнать проценты от суммы, нужно умножить их на величину 1%. А чтобы перевести известное значение в проценты, следует разделить его на величину 1%. Этот метод отлично помогает в вопросе, как перевести целое число в проценты.

Представьте, что вы пришли в магазин за шоколадом. Обычно он стоит 250 рублей, но сегодня скидка 15%. Если у вас есть дисконтная карта магазина, шоколад обойдется вам в 225 рублей. Чем будет выгоднее воспользоваться: скидкой или картой?

Как решаем:

  • Переведем 15% в рубли:

    250 : 100 = 2,5 — это 1% от стоимости шоколада,

    значит, 2,5 × 15 = 37,5 — это 15%.

  • 250 — 37,5 = 212,5.
  • 212,5 < 225.

Ответ: выгоднее воспользоваться скидкой 15%.

Составление пропорции

Пропорция — определенное соотношение частей между собой. 

С помощью метода пропорции можно рассчитать любые проценты. Выглядит это так:

a : b = c : d. 

Читается: а относится к b так, как с относится к d

Также важно помнить, что произведение крайних членов равно произведению средних. Чтобы узнать неизвестное из этого равенства, нужно решить простейшее уравнение

Рассмотрим пример. Насколько выгодно покупать спортивную футболку за 1390 рублей при условии, что в магазине в честь дня всех влюбленных действует скидка 14%?

Как решаем:

Найдем, сколько рублей составляет выгода, то есть скидка в 14%. Обозначим стоимость футболки за 100%, значит 1390 рублей = 100%. Тогда 14% это х рублей. Получаем пропорцию:

1390 руб. = 100%
x руб. = 14%

Перемножим крест-накрест и найдем x:

x = 1390 × 14 : 100
x = 194,6

Ответ: выгода по скидке составила 194,6 рубля.

Соотношения чисел

Есть случаи, при которых можно использовать простые дроби. Например, 10% — это десятая часть целого. Чтобы найти 10% от числа a, нужно разделить его на 10. Собрали примеры соотношения чисел в таблице.

Процент Дробь Как найти % от числа a
10% 1/10 a : 10
20% 1/5 a : 5
25% 1/4 a : 4
50% 1/2 a : 2
75% 3/4 a : 4 × 3

Задача для тренировки. В черную пятницу вы нашли отличный пиджак со скидкой 25%. В обычный день он стоит 8500 рублей, но сейчас с собой есть только 6400 рублей. Хватит ли средств для покупки?

Как решаем:

  • 100% — 25% = 75%,

    значит, нужно заплатить 75% от первоначальной цены.

  • Используем правило соотношения чисел:

    75% — это 3/4 от числа, значит,
    8500 : 4 × 3 = 6375 (рублей).

Ответ: средств хватит, так как пиджак стоит 6375 рублей.

Формула расчета простых процентов

Формула расчета процентов по кредиту аннуитет достаточно сложная. По своей сути такие платежи включают не только основной долг, но и ставку на оставшуюся сумму главного займа. Со временем сумма главного долга становится меньше, а значит и размер суммы, начисляемой на нее, существенно снижается. Итак, для вычисления суммы основного долга можно использовать такую формулу:

ВД=ПСК/СК

Где ПСК – первоначальный размер средств, взятых в займы, СК – термин, на который все эти средства берутся, ВД является возвратом основного долга. После этого можно использовать формулу расчета простых процентов по кредиту. Интересно, что позиции финансовых учреждений, касательно подсчета, достаточно разные. В принципе, все зависит от того, на какой период вы оформляете соглашение.

12 месяцев = один год — позиция №1. Формула будет выглядеть таким образом:

СНП= ООД*ПГС/12

Где ООД является остатком основного долга, что существует на момент расчета, ПГС –ставка (годовая), СНП – ставка, что начисляется.

365 дней = один год — позиция №2. Формула будет выглядеть таким образом:

СНП = ООД*ПГС*КДМ/365

Где ООД является остатком основного долга, что существует на момент расчета, ПГС –ставка (годовая), КДМ – календарные дни в 1 месяце (как правило, от 28 до 31) ,СНП – ставка, что начисляется.

Расчет сложных процентов по вкладу

Если вам необходимо рассчитать сложные проценты по вкладу — это будет несколько сложнее. Для этого используется следующая формула.

Формула сложных процентов по вкладу:

Sп = Sв*(1+%)n-Sв

где:

  • Sп — сумма процентов по вкладу;
  • Sв — сумма вклада;
  • % — процентная ставка в период капитализации в виде десятичной дроби. % = p*Nд/Nг (p — процентная ставка по вкладу в виде десятичной дроби, Nд — период капитализации в днях (месяцах), Nг — количество дней (месяцев) в году);
  • n — число периодов капитализации.

Как вы видите, для расчета нам понадобится функция возведения в степень. Она есть на стандартном калькуляторе для Windows. Чтобы ее увидеть — измените через меню вид калькулятора на «инженерный». Xy — это и есть функция возведения в степень. Например, чтобы возвести 1,01 в 12 степень, нажмите на калькуляторе последовательно: 1,01 -> Xy -> 12 -> =.

Рассмотрим, как рассчитать сложный процент по вкладу по формуле сложных процентов на примере.

Как поможет сложный процент в построении капитала?

Самый впечатляющий пример работы сложного процента будет ниже.

Представьте, что базовая сумма у вас совсем мизерная — 1000 рублей. Но вы каждый месяц можете откладывать от зарплаты по 1000 рублей.

Теперь прикинем варианты, какие проценты дают доступные средства сохранения и инвестирования денег в год:

  • 5% — государственные облигации, так называемые облигации федерального займа. Это упрощенно, на самом деле суммы может быть побольше.
  • 10% — самый щедрый банковский вклад
  • 15% — смешанный инвестиционный портфель акций и облигаций
  • 20% — такой процент годовых может дать портфель из акций фондовой биржи.

Давайте не будем больше приводить формулы, так как мы уже все подробно рассказали. Теперь просто возьмем итоговые цифры, которые поражают воображение неподготовленного человека.

Как мы видим результаты впечатляющие, суммы растут как снежный ком. Вы все можете проверить по калькулятору или экселю, здесь нет обмана. Вы действительно можете стать миллионером, откладывая всего по 1000 рублей в месяц.

А что если вы сможете откладывать по 10000 рублей? Теперь подрисуйте в таблице везде по нолику и еще раз удивитесь результатам.

Почему в акции инвестировать безопасно? Почему акции непременно будут расти на 20% годовых? Подробная информация о стратегии и ответы на эти вопросы вы получите на нашем вебинаре об индексном инвестировании, а точнее записи этого вебинара.

Как даже с 1 000 рублей в кармане создать пассивный доход к пенсии

Пенсионный возраст увеличили, накопительную пенсию заморозили, регулярно проводят пенсионную реформу и меняют условия. Все эти хаотичные телодвижения говорят только о том, что у руководства нет четкого плана действий и видения, как же должна начисляться пенсия в нашей стране.

Какой вывод простому гражданину нужно сделать из всего этого? Только один – накопить на пенсию самостоятельно. И поможет в этом сложный процент. На конкретных расчетах посмотрим, как даже с 1 000 ₽ в месяц создать пассивный доход. Но для начала замечательная сказка из книги Бодо Шефера “Мани, или Азбука денег”.

Жил-был когда-то крестьянин. Каждое утро он ходил в курятник, чтобы взять на завтрак яйцо, которое снесла его курица. Но однажды он нашел в гнезде не обычное яйцо, а золотое. Сначала он не мог в это поверить. Возможно, кто-то решил над ним зло подшутить. Но ювелир, которому он принес показать яйцо, подтвердил, что оно из чистого золота. Крестьянин выгодно продал яйцо и устроил большой праздник.

На следующее утро он пошел в курятник раньше, чем обычно. В гнезде опять лежало золотое яйцо. Так продолжалось несколько дней. Но крестьянин был жадным и хотел побыстрее разбогатеть. Он злился на свою курицу, потому что “глупая птица” не могла объяснить ему, как она умудряется нести золотые яйца. Ему казалось, что тогда он мог бы и сам нести золотые яйца. Тогда у него было бы каждый день по два яйца. И однажды крестьянин так сильно разозлился, что вбежал в курятник и зарезал свою курицу. Некому стало нести золотые яйца.

Мораль этой сказки такова: нельзя резать курицу, несущую золотые яйца. Но чтобы получать золотые яйца, надо сначала завести курочку. Этим вы и должны заняться как можно скорее. Время – друг инвестора и враг того, кто откладывает на потом создание личного капитала.

Пример 1. Необходимо рассчитать, сколько денег нужно накопить, чтобы жить на пассивный доход через какое-то количество лет. Допустим, мы хотим на пенсии ежемесячно получать 50 000 ₽. Учтем инфляцию 4 %.

Ставку доходности примем равной 10 %. Ее размер зависит от состава инвестпортфеля. Если решили копить в облигациях, то закладывать надо меньший %. Если составить сбалансированный портфель из разных инструментов (например, ETF, акции и облигации отдельных эмитентов, золото), то 10 % – очень консервативная оценка. На практике получается значительно больше.

Расчет без учета инфляции: 50 000 * 12 месяцев / 0,1 = 6 000 000 ₽. Для учета инфляции воспользуемся онлайн-калькулятором. Необходимо накопить уже 10 000 000 ₽.

Пример 2. Есть начальный капитал 50 000 ₽ с ежемесячным вложением равной суммы: 1 000 ₽, 5 000 ₽ и 10 000 ₽. Доходность – 10 %, примем ежегодное начисление %. Сколько накопим через 10, 20, 30 и 40 лет?

Сумма ежемесячных взносов Срок накопления
10 лет 20 лет 30 лет 40 лет
1 000 ₽ 320936,22 1023674,99 2846398,39 7574073,45
5 000 ₽ 1085932,6 3772874,97 10742111,47 28818516,12
10 000 ₽ 2042178,08 7209374,94 20611752,84 55374069,46

Какие выводы мы можем сделать из этих расчетов:

  1. Накопить на пассивный доход в 50 000 ₽ в месяц мы сможем, откладывая 5 000 ₽ в течение 30 лет. Если инвестируем по 10 000 ₽, то уже примерно через 23 года можно выходить на пенсию.
  2. С ежемесячными 1 000 ₽ нужно довольствоваться меньшей суммой пассивного дохода. Например, чтобы получать ежемесячно 35 000 ₽, надо накопить 7 000 000 ₽. Из таблицы видно, что только через 40 лет достигнем этого. А вот для ежемесячной прибавки к пенсии в 20 000 ₽ понадобится накопить 4 000 000 ₽ за 35 лет.

Поиграйте своими цифрами в любом финансовом калькуляторе сложных процентов. У кого-то начальная или ежемесячная сумма будет больше, кто-то рассмотрит меньший или больший срок и т. д.

Как рассчитать простые проценты по пополняемому вкладу?

Более сложным является расчёт доходности по вкладу, который предусматривает пополнение.

Если вкладчик оформляет пополняемый депозит, то он может в течение срока действия договора дополнительно вносить денежные средства.

В этом случае доходность вклада можно рассчитать следующим образом.

Д = (С1 x К1 С2 x К2 С3 x К3 …) П / Кг,

где параметры аналогичны тем, которые приведены в предыдущем примере.

Особенностью пополняемого вклада является то, что он состоит из нескольких частей, каждая из которых размещается на разный срок. Первая часть, начальный взнос, размещается на полный срок, предусмотренный договором, остальные части размещаются на последовательно уменьшающиеся периоды. Если размер процентной ставки по депозиту, оформляемому на год, составляет 8%, первоначальный взнос – 50 тысяч рублей, а спустя полгода вкладчик внёс ещё 50 тысяч рублей, то общий доход в конце срока вклада составит 6 тысяч рублей.

Расчет процентов по вкладу: формула

Если вы оформляете вклад с простыми процентами (без капитализации), то их легко можно рассчитать по следующей формуле.

Формула расчета процентов по вкладу:

Sп = (Sв*%*Nд)/Nг

где:

  • Sп — сумма процентов по вкладу;
  • Sв — сумма вклада;
  • % — процентная ставка в виде десятичной дроби (например, при 15% годовых, %=0,15);
  • Nд — число дней начисления процентов;
  • Nг — число дней в году (365 или 366).

Для точного расчета процентов по вкладу нужно точно знать, сколько дней банк будет начислять вам проценты (это указывается в условиях договора). Например, дата зачисления средств может учитываться, а может не учитываться. Дата возврата средств, как правило, не учитывается.

Расчет процентов по вкладу с пополнением и/или снятием производится путем отдельного подсчета для каждого периода нахождения на депозите определенной суммы и суммирования этих результатов.

Рассмотрим, как работает формула расчета процентов по вкладу на примерах.

Пример сложного процента на банковском депозите

Удобно и выгодно, когда ваши деньги одномоментно задействованы в разных инструментах. Сразу рекомендую не только у менеджера устно, но и в письменном договоре детально изучить — какой именно процент используется и какие есть нюансы по нему. На некоторых банковских сайтах или в мобильных приложениях есть калькулятор сложных процентов с капитализацией и пополнением. Показываю, как работает эта формула.

  1. Первоначальный вклад составил 100 тыс. рублей на 1 год с правом пополнения без ограничения суммы под 5% годовых.
  2. Во втором полугодии вы добавили к вкладу еще 100 тыс. рублей.
  3. За первую половину вы заработали (100000/100*5%) / 2=2500. Во втором полугодии получили (200000/100*5%) / 2 = 5000. Итого прибыль за год 7500.
  4. Далее вы можете забрать свои 7500 или добавить их к 200 тыс. или увеличить вклад еще на определенную сумму.

Наиболее выгодно так работать с проверенными инструментами, поэтапно повышая сумму вклада и внося все данные в excel, чтобы не заблудиться.

 
Как правило, разница на доходе с правом неограниченного пополнения и на обычном способе не превышает 0,5-1% в год, а иногда и вовсе отсутствует.

Ради справедливости нужно рассмотреть и правило, как работает формула расчета простых процентов по кредиту, поскольку ее часто применяют в работе. Простой процент начисляется так: сумма кредита умножается на процентную ставку и поделенная на 365 дней. Для примера: у вас кредит на 100 тыс. рублей под 10% годовых. Если предложен дифференцированный способ, то ежемесячно вам будет начисляться 1000 рублей непосредственно за пользование средствами.

Оплачивая их, через определенный срок можно приступить к погашению самого «тела». Многие банки предлагают аннуитетный платеж, работающий по формуле сложного процента. Это означает, что вы будете оплачивать кредит плюс-минус равными долями. 1000 рублей в месяц за сам кредит и, например, 1000 рублей за само тело. Таким образом, уже на второй месяц проценты будут начисляться на 99 тыс. остатка и с каждым месяцем и платеж по процентам, и выплаты по кредиту будут уменьшаться.

Обратите внимание: сложные проценты по кредиту предлагаются на средних и высоких суммах, в частности, когда оформляете ипотеку или покупаете по договору автомобиль из салона. Хотя есть и аналогичные предложения среди кредитных карт, например, карта Халва, где выплаты подразумеваются равными долями за определенный период и иногда вовсе с минимальными процентами

Узнав способ начисления процента в рабочем инструменте, возможность вносить дополнительно средства или погашать кредит досрочно, важно обратить внимание еще на один аспект — ставку дисконтирования. Это величина, применяемая для пересчета грядущих денежных потоков в общую величину актуальной стоимости. С математической точки зрения, это формула, обратная сложному проценту

С ее помощью оценивается, сколько нужно сейчас инвестировать средств, чтобы, например, через 2 года, получить 100 тысяч. Рассчитывается она по формуле: итоговая сумма (100 тыс. руб) равно как произведение неизвестного на (1+0,1 (10% — средняя ставка банка)), возведенное в квадрат. Далее по правилу пропорции выделите тот самый Х (икс). Фактически, это 82644 рубля

С математической точки зрения, это формула, обратная сложному проценту. С ее помощью оценивается, сколько нужно сейчас инвестировать средств, чтобы, например, через 2 года, получить 100 тысяч. Рассчитывается она по формуле: итоговая сумма (100 тыс. руб) равно как произведение неизвестного на (1+0,1 (10% — средняя ставка банка)), возведенное в квадрат. Далее по правилу пропорции выделите тот самый Х (икс). Фактически, это 82644 рубля.

 
Учитывайте правило: ставка дисконтирования должна быть выше предложенной доходности.

В итоге подчеркну: сложные проценты в финансовых инструментах только на первый взгляд выглядят сложными, но, если разобраться в их сути, никаких камней преткновения не возникнет, а еще более — вы сможете получить существенную выгоду. Всем желаю только выгодных начислений для инвестиций и минимальных для кредита, если же вы все же решились его оформить.

Профессиональный инвестор с опытом работы 5 лет с разными финансовыми инструментами, ведет свой блог и консультирует вкладчиков. Собственные эффективные методики и информационное сопровождение инвестиций.

Калькулятор сложных процентов в Excel

Конечно же, задачи на сложные проценты целесообразнее решать в MS Excel по уже известным вам из предыдущих разделов формулам. По ходу статьи вы уже могли скачать некоторые примеры типичных задач, но если этого мало — предлагаю полную подборку калькуляторов по сложным процентам, реализованную в одном Excel-файле. Получить его можно бесплатно, просто заполните форму ниже:

Если письмо не пришло, проверяйте папку «Спам», иногда попадает туда. Если не видите форму подписки, оставьте комментарий к статье и я добавлю ваш электронный адрес вручную.

Вот какие задачи по простым и сложным процентам может решать «Коллекция калькуляторов для инвестора»:

  • расчёт конечной суммы вклада;
  • расчёт начальной суммы вклада;
  • расчёт необходимой процентной ставки;
  • расчёт срока инвестирования;
  • расчёт конечной суммы вклада с учётом регулярных пополнений и капитализацией;
  • ожидаемый пассивный доход в каждом из случаев.

Пример одного из калькуляторов для расчёта сложных процентов в Excel:

Дополнительно к каждому калькулятору автоматически строится график доходности вклада с капитализацией и без:

А также уже знакомые вам таблицы:

Думаю, файл будет полезен и для практического использования, и в обучающих целях — в готовом виде есть все формулы, по которым можно считать сложные проценты в Excel.

Простые проценты в математике

Задача 5. В класс закупили 3 энергосберегающие окна, которые на 20 % дороже обычных. Сколько потратили денег, если за обычные окна нужно заплатить 1400 гривен.

Решение: Найдем цену энергосберегающего окнаP=1400*(1+20/100)=1680 (грн.) За три окна заплатили1680*3=5040 (грн).

Задача 6. В бочке объемом 200 литров перевозили масло . На станции отлили 60 литров. Сколько процентов от обьема осталось?

Решение: Задача состоит в нахождении количества в процентах масла от общего объема бочки.200-60=140 (л); 140/200*100%=70 % Осталось 70% объема бочки.

Задача 7. При несвоевременной уплате долгов насчитывают 2% пени за каждый просроченный день. Какую сумму нужно заплатить через 12 дней после срока погашения 500 рублей долга?

Решение: По формуле простых процентов находимP=500*(1+2/100*12)=620 (рублей)Нужно заплатить 620 рублей.

Рассмотрим задачи из учебника для 9 класса авторов А.Г. Мерзляк, В.Б. Полонский, М.С. Якир « Аглгебра ». (Номер в скобках)

Задача 8. (542) К сплаву массой 600 г, содержащему 12 % серебра, добавили 60 г серебра. Какое содержание серебра в новом сплаве?

Решение: Определяем сколько грамм серебра в первом сплавеP=600*12/100=72 (г)К найденному значению добавляем 60 грамм серебра P1=72+60=132 (г) При определении процентного содержания серебра не следует забывать, что вес нового сплава вырос на массу серебра, которую добавили. Если би Вы вычисляли следующим образом 132/600*100%=22% то получили — неправильный результат .ЗАПОМНИТЕ: в подобных задачах сначала находят меру ( вес, объем, длину) нового объекта, а затем находят содержание. В заданной задачи новый сплав получит массуP2=600+60=660 (г) а процентное содержание серебраP1/P2*100%=132/660*100%=20 % будет следующим — 20%.

Задача 9. (543) В саду росли яблони и вишни, причем яблони составляли 42% всех деревьев. Вишен было на 48 деревьев больше, чем яблонь. Сколько деревьев росло в саду?

Решение: К правильному ответу можно идти несколькими способами. Рассмотрим следующий из них. Пусть яблони составляют 42% всех деревьев, тогда вишни100-42=58%. Вишен на 48 больше нежели яблонь. Разница между ними в процентах составляет58-42=16% а в количестве — 48 деревьев. Задача состоит в нахождении количества деревьев, поэтому складываем отношения16% – 48 деревьев 100 % –Х деревьев Отсюда находим количество деревьев в садуХ=100*48/16=300 (деревьев).

Задача 10. (544) За два дня был проложен кабель. За первый день проложили 56% кабеля, а за другой — на 132 м меньше, чем первого. Сколько всего метров кабеля было проложено за два дня?

Решение: Задача похожа на предыдущую. За второй день проложили 100-56=44% кабеля, разница между первым и вторым днем составляет 56-44=12% и составляет 132 метра. На основе этого составляем отношение12% – 132 м100 % –Х м Отсюда находим искомую длинуХ=100*132/12=1100 (м.) За два дня проложили 1100 м.. кабеля.

Задача 11. (545) За первый день мальчик прочитал 25% всей книги, за второй — 72% от количества страниц что осталась, а за третий — остальные 84 страницы. Сколько страниц в книге?

Решение: 72 % процента от остатка книги составляет72*(100-25)/100= 54%. На третий день оставалось прочитать100-25-54=21% или 84 страницы. Составляем соотношение21% – 84 ст 100 % –Х ст с которого находимХ=100*84/21=400 (ст), что книга содержит 400 страниц.

Наращивание простых и сложных процентов

Формулы простых и сложных процентов позволяют определить объемы переплаты и предварительно оценить выгоды банковского продукта. При краткосрочных займах простые проценты оказываются более выгодными для банков. Однако если срок кредитования имеет среднесрочные или долгосрочные тенденции, разница может быть весьма ощутима для клиента. Отсюда выплывают следующие закономерности:

Независимо от процентной ставки при:

  1. 0 < N < 1 , то (1 + N * %) > (1 + %)N.
  2. N > 1, то (1 + N * %) < (1 + %)N.
  3. N = 1, то (1 + N * %) = (1 + %)N.

Как видим, финансовые институты, выдающие кредиты, получают больше выгоды от простых процентов при начислении всего дохода один раз к окончанию всего срока кредитования. Сложный процент приносит выгоды только если кредитование осуществляется не менее года. Оба типа процентов дают идентичную прибыль банку, если кредит оформлен на срок в один год, а проценты начисляются один раз по окончании партнерства.

Сложные проценты

РешитьСложная процентная ставка наращенияm=12m=4S=P·(1+im​)m·nсмешанным методомn

Современная стоимость Р величины S находится в случае сложной процентной ставки по формуле:
P=S(1+i)n

Примеры задач на сложные проценты

  1. Какой величины достигнет долг, равный P = 1 млн.руб., через n = 5 лет при росте по сложной ставке i = 15,5% годовых, если проценты начисляются раз в год, ежемесячно, поквартально и два раза в год?
    1) Сложные проценты начисляются раз в год:
    2) Сложные проценты начисляются два раза в год:
    S=1 000 000·(1+0,1552​)2·5 = 2 109 467,26 руб.
    3) Сложные проценты начисляются 4 раза в год (поквартально):
    S=1 000 000·(1+0,1554​)4·5 = 2 139 049,01 руб.
    4) Сложные проценты начисляются ежемесячно (12 раз в год):
    S=1 000 000·(1+0,15512​)12·5 = 2 159 847,20 руб.
  2. Через n = 5 лет предприятию будет выплачена сумма S = 1 млн.руб. Определить ее современную стоимость при условии, что применяется ставка сложных процентов i = 10% годовых.
    P=S(1+i)n
    P=1 000 000(1+0,1)5​ = 620 921,32 руб.
    Если проценты начислялись ежеквартально.
    P=S(1+im​)m·n
    P=1 000 000(1+0,14​)4·5​ = 610 270,94 руб.
  3. Определить современную стоимость S = 20 тыс.руб., которые должны быть выплачены через четыре года (n = 4). В течение этого периода на первоначальную сумму начислялись сложные проценты по i = 8 %годовых: а)ежегодно; б)ежеквартально.
    P=S(1+i)n
    P=20 000(1+0,08)4​ = 14 568,92 руб.
    Если проценты начислялись ежеквартально.
    P=S(1+im​)m·n
    P=20 000(1+0,084​)4·4​ = 14 570 руб.
  4. За взятые в долг деньги под сложную процентную ставку i=35% годовых должник обязан уплатить кредитору 30 тыс. руб. 1 июля 1997 г. Какую сумму необходимо уплатить должнику, если он вернет долг: а) 1 января 1997 г.; б) 1 января 1998 г.; в) 1 июля 1999 г.?
    Количество дней в 1997 году: T=365.
    а) 1 января 1997 г.;
    Эта дата ранее 1 июля 1997 г., поэтому речь идет о поиске P (S=30000). Количество дней между 1 января 1997 г. и 1 июля 1997 г. составляет d=181 дн..
    б) 1 января 1998 г.;
    Эта дата позже 1 июля 1997 г., поэтому находим S (P=30000). d1=01.07.1997 и d2=01.01.1998.
    в) 1 июля 1999 г.Количество лет между 1 июля 1997 г. и 1 июля 1999 г. составляет n=2 года.
    S=P·(1+i)n=30000·(1+0.35)2 = 54 675 руб.

Как открыть вклад «Формула»?

Простой вариант

Sp Проценты по вкладу.
S Тело вклада.
P Годовая процентная ставка.
t Период депозита в днях.
Y Количество календарных дней в году (365 или 366).

Приведем пример. Вкладчик положил на депозит 10000 рублей. Годовая ставка – 10% годовых. Программа вклада не предполагает пополнение и капитализацию.

Таким образом, за 3 месяца вклада клиент получит проценты  в размере 246,6 рублей.

Клиент положил 10000 рублей под 10% годовых, сроком на 3 месяца. Вклад пополнял два раза на 1000 рублей. Первый – через 30 дней, второй – через два месяца.

Таким образом, клиент получит 82,2 рубля в первый месяц до пополнения вклада, и 180,8 рублей и 295,9 рублей во второй и третий периоды соответственно.

Сложная версия

Сложный способ расчета предполагает капитализацию процентов. Рассмотрим схему на примере. Клиент разместил депозит 100000 рублей по ставке 8,7%, на полгода. Условия вклада – с капитализацией процентов. Расчет производится следующим образом.

На конец периода вклада клиент получит 4367,9 рублей дополнительной прибыли. Проверить расчет очень просто формулой простых процентов. Для этого срок вклада разбивается на отдельные периоды и для расчета берется остаток с учетом предыдущих выплат и начислений.

Месяц Сумма депозита Процентная ставка Количество дней Сумма процентов Сумма депозита на конец периода
1 100000 8,7% 30 дней 715,1 100715,1
2 100715,1 8,7% 30 дней 720,18 101435,28
3 101435,28 8,7% 30 дней 725,34 102160,62
4 102160,62 8,7% 30 дней 730,52 102891,14
5 102891,14 8,7% 30 дней 735,74 103626,88
6 103626,88 8,7% 30 дней 741 104367,88

Подставляя в формулы значения по депозитам можно самостоятельно рассчитать конечный доход

Приезжайте в один из наших офисов для подписания договора и оцените высокий уровень сервиса, качества и скорости обслуживания, которые мы рады предоставить каждому нашему Клиенту!

Адрес центрального офиса: г. Москва, Кадашёвская набережная, 26

Телефон офиса:  7 (495) 662-45-45

Режим работы:

  • Понедельник – четверг: 9.30 – 18.00
  • Пятница: 9.30 – 16.45
  • Сб.-вс.: выходные

Адрес офиса “Таганский”: г. Москва, улица Таганская, дом 26, строение 1

Телефон офиса:  7 (495) 662-45-45 (доб. 750)

Режим работы:

  • Понедельник – четверг: 11:00-20:00
  • Пятница: 11:00-18:45
  • Сб.-вс.: выходные

Формулы простых и сложных процентов

Поскольку простые и сложные проценты чаще всего используются при расчете прибыли от банковских вкладов, продолжим на их примере. Для решения задач нам понадобится такая информация:

  • К — начальная сумма вклада;
  • К — конечная сумма вклада;
  • R — ставка доходности, переводится из процентов в число (10% = 0.1);
  • N — количество периодов (лет).

Формула простого процента

По этой формуле мы можем рассчитать конечную сумму вклада без капитализации полученной прибыли. Для этого нужно знать начальную сумму вклада, процентную ставку за 1 период инвестирования и временной интервал. Если конечная сумма задана сразу и нужно найти другую неизвестную переменную, используйте производные формулы простого процента:

Формула сложного процента

По этой формуле мы можем посчитать конечную сумму вклада с учётом капитализации полученной прибыли, зная начальный депозит, процентную ставку и нужный временной интервал. Для решения задач также можно использовать производные формулы сложного процента:

На практике часто дело не заканчивается первоначальным депозитом — многие пользуются регулярными пополнениями, например делают регулярные инвестиции из зарплаты. Для этих случаев формула сложного процента становится длиннее:

где D — сумма регулярных пополнений банковского депозита

Обратите внимание, степень N-1 означает, что доливки начинаются со второго инвестиционного периода (если сумма дополнительных инвестиций вносится сразу, то N-1 меняется на N)

Ну что, удачи на экзаменах всем читающим меня студентам 🙂 Для закрепления далее мы разберем несколько примеров задач на сложные проценты.

Послесловие

В рамках данного обзора, вы узнали что такое капитализация процента, какова формула сложных процентов, а так же увидели пример с расчетом, демонстрирующим разницу в доходе.

Хоть, сложные проценты и могут представлять интерес, всегда важно помнить про здравую логику и то, что у вас своя голова. Во-первых, могут присутствовать различные тонкости (что и когда можно снимать, что происходит если снять деньги раньше, некратные периоды и так далее)

Во-вторых, чрезмерные сложности при расчетах и сравнении, особенно если используются дробные цифры (например, 6,03% в год с ежегодной капитализацией за 10 лет составит примерно 79,6% дохода, а вот 5,96% при ежемесячной капитализации составит 81,2%). Подобные вещи непросто заметить обычному человеку.

В-третьих, капитализация предусматривает автоматическое повторное вложение денег, в то время как простые проценты могут подразумевать возможность использовать доход для иных целей. И так далее.

В чем отличие

На самом деле система начисления процентов по вкладам сильно различается в первую очередь по той причине, что с капитализацией процентов выгода депозита может быть значительно выше, нежели при простой системе. Потому что при простой системе прибыль растет в арифметической прогрессии, а при сложной в геометрической. Чтобы наглядно в этом убедиться, ниже приведена схема сложных процентов в сравнении со схемой простых процентов.

Схема сложных процентов в сравнении со схемой простых процентов

Но, в этом вопросе также есть подводные камни

Условия банковских вкладов строго индивидуальны, поэтому при выборе депозитного продукта в первую очередь обратите внимание на количество периодов капитализации за весь срок действия договора. Например, банк указывает, что по вашему депозитному договору предусмотрена капитализация процентов, но она осуществляется 1 раз в 6 месяцев, то есть первый доход, вы получите спустя полгода после заключения соглашения с банком. При этом вы решили разместить средства лишь на 3 месяца, соответственно, вы получите свои средства раньше, чем банк проведет капитализацию процентов и в данном случае целесообразней выбрать простой расчет процент по вкладу

При этом вы решили разместить средства лишь на 3 месяца, соответственно, вы получите свои средства раньше, чем банк проведет капитализацию процентов и в данном случае целесообразней выбрать простой расчет процент по вкладу.

Процентная ставка определяет цену денег

В любом из этих двух слу­ча­ев про­цент­ная став­ка име­ет оце­ни­ва­ю­щее денеж­ное изме­ре­ние: каки­ми будут сбе­ре­же­ния вклад­чи­ка или бан­ка через месяц, год или несколь­ко лет.

Про­цент­ная став­ка по депо­зи­там вклад­чи­ков обыч­но ниже став­ки по бан­ков­ским кре­ди­там. В этом заклю­чен основ­ной зара­бо­ток бан­ков­ских и финан­со­вых учре­жде­ний – взять день­ги по мень­шей цене и рас­по­ря­дить­ся ими, пере­одол­жив по более высокой.

Для вклад­чи­ков же депо­зит — это в основ­ном спо­соб сохра­не­ния денеж­ных средств, а не зара­бот­ка, так депо­зит­ные став­ки сей­час низ­ки, а в неко­то­рых бан­ках Евро­пы они даже отрицательные.

Базо­вая про­цент­ная став­ка – это наи­мень­ший кре­дит­ный про­цент, предо­став­ля­е­мый круп­ным надеж­ным кам­па­ни­ям и кли­ен­там. БПС обыч­но уста­нав­ли­ва­ет­ся цен­траль­ны­ми банками.

Как рассчитать кредит в Excel?

Самый надежный и достоверный способ расчета суммы будущих процентов и размера общей переплаты по кредиту при каждом из видов начисления процентной ставки, является использование программного обеспечения excel. Благодаря множеству формул, все что вам необходимо — задать условия для проведения расчетов, а дальше система выполнит все действия сама.

Для того чтобы максимально разобраться со всеми формулами, предлагаем ознакомиться с подробным видео о расчете кредитов в «Эксель».

По сути, для того чтобы рассчитать нужные показатели, будет достаточно потратить не более 15 минут собственного времени. Соответственно, сделав предварительные подсчеты, вы сразу сможете для себя определить максимально удачные условия кредитования.

Формула сложного процента для банковских вкладов

На самом деле формула сложного процента применительно к банковским вкладам несколько сложнее, чем описана выше. Процентная ставка для вклада (%) рассчитывается так:

% = p * d / y

гдеp — процентная ставка (процентов годовых / 100) по вкладу,
например, если ставка 10,5%, то p = 10,5 / 100 = 0,105;d — период (количество дней), по итогам которого происходит капитализация (начисляются проценты),
например, если капитализация ежемесячная, то d = 30 дней
если капитализация раз в 3 месяца, то d = 90 дней;y — количество дней в календарном году (365 или 366).

То есть можно рассчитывать процентную ставку для различных периодов вклада.

Формула сложного процента для банковских вкладов выглядит так:

SUM = X * (1 + p*d/y)n

При расчете сложных процентов нужно принимать во внимание тот факт, что со временем наращивание денег превращается в лавину. В этом привлекательность сложных процентов

Представьте себе маленький снежный комок размером с кулак, который начал катиться со снежной горы. Пока комок катится, снег налипает на него со всех сторон и к подножию прилетит огромный снежный камень. Также и со сложным процентом. Поначалу прибавка, создаваемая сложным процентом, почти незаметна. Но через какое-то время она показывает себя во всей красе. Наглядно это можно увидеть на примере ниже.

Заключение

Используйте силу сложного процента для создания личного капитала. Чем раньше начнете, тем быстрее он сформируется и станет обеспечивать вас и ваших детей. Время и дисциплина – наши помощники.

Поэтому так важно уже в подростковом возрасте объяснять, что и как работает в мире финансов. У молодых людей есть достаточно времени, чтобы обеспечить свою пенсию

Начать можно с небольших, но регулярных сумм, а потом увеличивать размер инвестиций, чтобы быстрее достичь финансовых целей. А вы верите в то, что государство придумает, как вас обеспечить в старости? Или уже начали сами строить свое будущее?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector